The ZooLib Cookbook

Michael David Crawford

The ZooLib Cookbook
Michael David Crawford

Published February 7, 2009

Copyright © 2001, 2009 Michael David Crawford

Thiswork is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view a copy of thislicense, visit
http://creativecommons.org/licenses/by-sa/3.0/

or send aletter to
Creative Commons
171 Second Street, Suite 300

San Francisco, California, 94105
USA

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
2. ZHEITOWOITA ..ottt e e et e e e e e e e e 4
ZMain: the Application ENtry POINEiiiiiiiii e 4
ZHellowWorld_App: the Application OBJECEuuiiiiiiiii e 4
INSEAIiNG the MENUScoeviieiiit et 6

ZRef: the Thread-Safe Reference Counted Smart POINteroveiviiiiieiiiiinieiiiieees 7
ZHelloWorld_Window: the Window ODJECESccieueiiiiiiii e 8

The WIindow Class DECIAralioNuueiiiuinieiiii ettt e e e eeni e eens 8

Our First LOOK @ ZPanELOCAIONicveeiiieieiii ettt 9
Constructing and Destructing the WIindowoooeeuiiiiiiiiiieci e 10

Creating the WINAOW'S IMENUSccuuuiiiiiiiie et 13

Enabling the Menu [TemSiiiiii e 13

HaNdliNg MENU MESSAESuuiiiiiiiiee ittt et et e e e 13

Chapter 1. Introduction

ZooLib isacross-platform application framework. What it allows you to do isto write asingle set of C+
+ sources and compile for different operating systems and microprocessors to produce native executable
applications with very little need for platform-specific client code.

Thisisof great benefit to adevel oper, asit allows you to support your application on avariety of platforms
without a lot of extra work developing parallel codebases. It also alows you to spend the bulk of your
time developing on whatever platform you enjoy the most while delivering for the platforms your users
need, even if they're not the same.

ZooLib was written over a period of some years starting in the early 1990's by software consultant
Andrew Green. In later years a great deal of work was contributed by Andy's clients Learning in
Motion [http://www.learn.motion.com/] as well as the Ontario Ingtitute for Studies in Education [http://
www.oise.utoronto.cal] (OISE). It was rel eased as open source under the MIT Licensein November 2000.

ZooLib's nomina home on the web is www.zoolib.org [http://www.zoolib.org/] but for the time being it
ishosted at zoolib.sourceforge.net [http://zoolib.sourceforge.net/].

ZooL ib applications are multithreaded. This means there can be multiple sequences of program execution
within one application. For the most part there is a thread for each window in a GUI application and a
thread for the main application itself, but you can create as many threads as you like, within the limits
imposed by the host operating system'’s resources.

It providesagraphical user interfacetoolkit that usesrenderersto provideal ook appropriateto the platform
the ZooLib app is running on. For example, on the Macintosh it uses the Appearance Manager if it is
available to enable a native Macintosh look.

ZooLib has a uniquely flexible and powerful method of laying out widgets in the user interface.
Unfortunately, this very power makes learning to lay out user interfaces in your programs somewhat
challenging, but once you come to understand the method (as implemented by the ZPanel ocator class)
you will agreethat it isindeed very useful.

ZooLib provides platform-independent TCP networking, and also has a database file format. The
combination of thesetwo allows oneto write database serverswithit. Asevidencethat ZooLibisn't just for
GUI, Learning in Motion sells a client/server educational collaboration system called Knowledge Forum
that uses a ZooL ib database server running without a user interface to serve as many as several thousand
ZooL.ib client programs in a school.

One advantage of ZooL ib's database format is that the databases are wholly contained in single files. This
allows databases to serve as end user documents. One could email a friend a database without knowing
it is a database, but thinking of it as an ordinary document, to be opened for editing in a GUI ZooLib
application.

ZooLib contains very helpful support for debugging. There are helpful functions and macros for
checking assertions, causing debugger breaks and logging error messages, and many frequently used core
components contain assertions that are enabled during debug builds. In addition, there is a debugging
memory allocator that checks for such things as write overruns. My experience with developing ZooLib
applications is that the programs | write in it are very reliable, because most bugs cannot get by for long
before they trigger an assertion.

To enable efficient memory management, ZooL ib contains the ZRef template, a reference counted smart
pointer. You can use it in cases where you might otherwise have used the more familiar auto_ptr from the
C++ standard library, but ZRef is much better than auto_ptr. First, because it uses reference counting, it

http://www.learn.motion.com/
http://www.learn.motion.com/
http://www.learn.motion.com/
http://www.oise.utoronto.ca/
http://www.oise.utoronto.ca/
http://www.oise.utoronto.ca/
http://www.zoolib.org/
http://www.zoolib.org/
http://zoolib.sourceforge.net/
http://zoolib.sourceforge.net/

Introduction

is safe to use ZRef's in STL containers. That is not the case for auto_ptr. Secondly, ZRef is thread safe;
it uses atomic arithmetic operations provided by the processor to increment and decrement the reference
count, and so it will do the right thing even when two threads are accessing a ZRef simultaneously.

The need for atomic operationsresult in ZooL ib's use of asmall amount of assembly code. For efficiency,
this is usually done as inline assembly, athough the implementation allows for calling the atomic
operations as subroutines.

This brings up the subject of ZooL ib's portability. ZooLib has been ported to Mac OS 680x0 and PowerPC,
Windows x86, BeOS x86, and Linux for x86 and PowerPC. However, bringing it to a new platform takes
more than a simple recompile. Part of the work required to port ZooL ib to a new microprocessor involves
writing the atomic arithmetic required for ZRef's to work, and also one needs to write implementations
of the parts of ZooLib that depend on the operating system or host GUI layer. ZooLib depends in only
basic ways on the host it is running on, so it should be possible to fully port ZooLib to any reasonable
GUI operating system in afew weeks.

When working with Open Source software, it is important to read and understand the license for each
package that you use. ZooL ib usesthe MIT License, the samelicense asisused for the X 11 graphical user
interface system. Youwill find ZooLib'slicensein asource code comment at the header of each sourcefile:

| % o o e e edalalol-.
Copyright (c) 2000 Andrew Green and Learning in Mtion, Inc.
http://ww. zoolib.org

Perm ssion is hereby granted, free of charge, to any person obtaining a copy
of this software and associ ated docunentation files (the "Software"), to deal
in the Software wi thout restriction, including without linitation the rights
to use, copy, nodify, nerge, publish, distribute, sublicense, and/or sell
copies of the Software, and to pernit persons to whomthe Software is
furnished to do so, subject to the foll owi ng conditions:

The above copyright notice and this permi ssion notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS | S", WTHOUT WARRANTY OF ANY KI ND, EXPRESS CR

| VPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF MERCHANTABI LI TY,

FI TNESS FOR A PARTI CULAR PURPOSE AND NONI NFRI NGEMENT. | N NO EVENT SHALL THE
COPYRI GHT HOLDER(S) BE LI ABLE FOR ANY CLAIM DAMAGES OR OTHER LI ABI LI TY, WHETHER |
AN ACTI ON OF CONTRACT, TORT OR OTHERW SE, ARI SING FROM OQUT OF OR IN

CONNECTI ON W TH THE SOFTWARE OR THE USE OR OTHER DEALI NGS I N THE SOFTWARE.
__ * [

You can find the text of a number of Open Source software licenses as well as a discussion of what they
mean on the Open Source Initiative's web page [http://www.opensource.org/]. You can also find an in-
depth discussion of some of the different licenses at the Free Software Foundation'swebsite at Licensing
Free Software [http://www.gnu.org/phil osophy/philosophy.html#LicensingFreeSoftware] .

Most of the software that has been developed for ZooLib so far has been proprietary, closed source
software. Thereisnot yet alot of sample code for new developersto learn from. At thetime of itsrelease,
just two demo applications were made available for download, ZHelloWorld and ButtonM essage, both of
them being very simple programs.

http://www.opensource.org/
http://www.opensource.org/
http://www.gnu.org/philosophy/philosophy.html#LicensingFreeSoftware
http://www.gnu.org/philosophy/philosophy.html#LicensingFreeSoftware
http://www.gnu.org/philosophy/philosophy.html#LicensingFreeSoftware

Introduction

My plan for this book as | write it is to explain each sample program in detail, and later to write more
sample programs, one for each important concept in ZooLib. At the time of thisfirst writing we just have
the two, but eventually there will be more and by reading this book you will gain a solid grasp of how
to writeaZooL ib application.

| have a special reason for writing this manual: | wanted to use ZooL ib before it was available as open
source, but when Andy was thinking of releasing it sometime soon. | encouraged him to release it to a
small number of developers who could useit in real products and give him feedback to enable him to get
the final kinks worked out, and in addition | promised him that if he let me at the source code, 1'd write
aprogrammer's manua for it.

For various reasonsitstaken me along timeto get started, so documentation was unfortunately completely
unavailable at the initial Open Source release of ZooLib. For that | accept complete responsibility and
apol ogize to the many developers who have struggled to understand ZooL ib without a manual.

| learned to work with ZooLib by actually writing an application in it, simultaneously for Mac OS and
Windows. The application was a special purpose graphic editor called Instant Makeover. The "special
purpose” was the application of simulated cosmetics to JPEG photos of the user's face, or the faces of
famous women. It was to be given away for free over the Internet to promote the sale of real cosmetics,
but unfortunately due to the catastrophic decline in Internet investment late in the year 2000 | was never
able to complete the program (my client, BeautyRiot.com, eventually released the prototype of Instant
Makeover, which was written in Macromedia Director).

It took meafew weeksto learnto work with ZooL b effectively, but oncel did | found it uniquely powerful
and easy to develop with. Instant Makeover was intended to run on low-end consumer computers, and so it
was important that my program run fast. It was my experience that ZooL ib was extremely efficient. | was
ableto do real-time resizing and moving of alphablended images on a 150 MHz PowerPC 604 Macintosh
and find the program responsive. In addition, Instant Makeover had acomplex layout in its main window,
and screen updates always happened very quickly. ZooLib is not guilty of the poor performance that some
other cross-platform solutions are sometimes accused of .

Chapter 2. ZHelloWorld

Our first ZooLib application must of course be the proverbial "Hello, World". With ZooLib we display
awindow with those words, and menu items that show how to retrieve the text from a resource file, and
display aBMP graphic.

ZMain: the Application Entry Point

Every ZooLib application's client code starts up in ZMain(). ZMain is used rather than main() because
different operating systems have different conventions for the parameters to be passed to main, and on
Windows, WinMain is used rather than main(). Most ZooL ib applications will have aZMain that is much
like ZHellowWorld's:

int ZMain(int argc, char** argv)
{
try

{
ZHel | oWor | d_App t heApp;

t heApp. Run() ;

}
catch (...)

{}

return 1;

Thefirst thingwe do iscreate aninstance of our application object, here ZHelloWorld_App. Itisasubclass
of ZApp. We call the ZApp's Run() method, and when Run() finishes, we exit ZMain, and the program
terminates.

There are ordinarily several threads in a ZooLib application. The application object has its own thread,
and each window has athread. The window threads come and go as windows are created and closed, but
the application object's thread keeps running the whole time.

ZHelloWorld _App: the Application Object

Let'slook at the class declaration for ZHelloworld_App:

class ZHel | oWorl d_App : public ZApp

{
publi c:
ZHel | oWor I d_App();
virtual ~ZHell oWorl d_App();

/1 From ZW ndowSuper vi sor via ZApp
virtual void W ndowSupervisorlnstall Menus(ZMenul nstall & i nMenulnstall);

/1 From ZApp

ZHelloworld

virtual void RunStarted();

b

In our case, ZHelloWorld_App has few responsihilities - it initializes the user interface widget factories,
installs the menus, and responds to the RunStarted message.

ZooLib needsto haveits user interface factoriesinitialized and terminated when the application starts and
quits. The natural place to do thisisin the application class' constructor and destructor:

ZHel | oWor | d_App: : ZHel | oWor | d_App()

{
ZU Util::slnitializeU Factories();

}

ZHel | oWor | d_App: : ~ZHel | oWor | d_App()

{
ZU Uil ::sTear DownUl Factories();

}

ZooLib draws its Ul widgets indirectly, through the use of ZUIFactories that manage renderers for the
different standard platform appearances. There are renderer sets for each of the platforms supported, so a
program running on Windows looks like a native Windows program, for example. For the Mac OS, two
ZUIlFactories are available, one which provides the classic Platinum look, and another which passes of
responsibility to the Mac OS A ppearance Manager, so it will adopt the appearance of the particular system
it isrunning on as well as the theme selected by the user.

When you create a Ul widget like a button, you ask the ZUIFactory to make one for you.
ZUIUtil::sInitializeUl Factories creates the Ul factory for you according to the platform.

There is aswitchable Ul Factory that calls through to areal one that may be changed at runtime. Y ou can
also provide your own factory if you want to completely control the appearance of your application, for
example to provide atheme. It is more common to customize the appearance of certain itemsin your Ul
while letting the default factory handle the rest.

ZApp is a subclass of ZMessagel ooper, which is a class that can receive and dispatch ZMessages.
Y ou use ZMessages to communicate between threads. When a ZMessagel ooper has started up, it sends
itself the message "zoolib:RunStarted" ZMessage. ZApp responds to receiving this message by calling
its RunStarted virtual member function. ZHelloWorld_App overrides RunStarted, so its version is called
instead.

Now looking at RunStarted:

voi d ZHel | oWor | d_App: : RunSt art ed()
{
ZW ndow* t heW ndow = new ZHel | oWor | d_W ndow(t hi s);
t heW ndow >Cent er () ;
t heW ndow- >Bri ngFront () ;
t heW ndow >Cet Lock() . Rel ease();

}

We see that RunStarted creates a window. It does this by using new to dynamically alocate a
ZHellowWorld_Window, passing itsthis pointer as aparameter. It centersthe window on the screen, moves
it to the front, and then releases its lock.

ZHelloworld

Since ZooLib is a multithreaded framework, we need to be concerned about locking objects that might
be accessed simultaneously by different threads. Windows run in their own threads, so we need to lock
the window for a different thread to modify its state. ZHelloworld_Window is a subclass of ZWindow;
ZWindows are created initially locked. We call GetLock() to get areference to the ZMutexBase that isthe
window's lock, then call its Release method to unlock it.

ZWindows are created initialy invisible. While they are till locked, you can do what you need to prepare
the window to be first shown. Onceit is unlocked, the window will draw and begin receiving messages.

Do not delete a window's pointer. If the user or operating system closes the window on the screen,
ZooLib will automatically delete the pointer to the window itself. It is possible to programmatically close
awindow; | will getinto thislater.

Installing the Menus

ZHelloWorld_Appisalsoresponsiblefor installing menus. Menus may be managed in one central location,
as in the ZApp object, or each window can manage its menus on its own, or they can manage the menus
in combination. ZApp can manage menus because it is also a subclass of ZWindowSupervisor.

Note that while menus are managed by or on behalf of windows, the location of the menus depends on
the platform-specific user interface. On BeOS and Microsoft Windows, each window has its own menu
bar. On Mac OS, thereisasingle global menu bar at the top of the screen. If awindow chooses to have a
unique menu bar, then activating that window will change the menu at the top of the screen.

At the time of thiswriting, X11 ZooLib applications are not able to have menus at all. Thisis because the
code to implement them has not been written yet; hopefully it will be available soon. When X11 menus
are implemented, the menu bars will be placed in each window.

Now let'slook at how menus areinstalled by a ZApp:

voi d ZHel | owor| d_App: : W ndowSuper vi sor | nst al | Menus(ZMenul nstal | & i nMenul nstal |)

{
ZApp: : W ndowSuper vi sor I nstal | Menus(i nMenul nstal |);

i f (ZRef <ZMenu> appl eMenu = inMenul nstal |l . Get Appl eMenu())
{
appl eMenu- >RenmoveAl | () ;
appl eMenu- >Append(new ZMenul t en{ ncAbout, "About " + this->CetAppNanme() + "..."))

ZRef <ZMenu> fil eMenu = new ZMenu;

i nMenul nstal | . Append("&File", fileMenu);
fil eMenu->Append(ncd ose, "&C ose", 'W);
fil eMenu- >AppendSepar at or () ;
fileMenu->Append(ncQuit, "&uit", 'Q);

}

First we call the base classto allow it to do any menu installation it needs.

Then, we check if an Apple menu isavailable. Thisisthe menu on the top-left corner of the screen running
under the Mac OS, whose title is an apple symbol. If we're running on a Macintosh, the ZRef<ZMenu>
returned by GetAppleMenu will contain a pointer to the Apple menu's ZMenu; otherwise it will contain
null. If the menu exists, we clear it, and append a ZMenultem pointer with the "About ZHelloWorld..."
iteminit.

ZHelloworld

ZRef:

The individual menu items are represented by ZMenultems. The menus are represented by ZMenus.
You can either create a ZMenultem and call ZMenu::Append to put it in the menu, or you can call the
overloaded ZMenu::Append with the text of the item, the menu command selector, and the accellerator
key. ZMenu::AppendSeparator will append a horizontal line to the menu, useful for separating groups of
menu items from each other.

The ZMenulnstall object receives the ZMenus and takes care to put them in the menu bar for you. Once
you have a ZRef<ZMenu> you can call ZMenulnstall::Append to put the menu into the menu bar. Note
that you can still install menu itemsin the ZMenu after it has been placed in the ZMenulnstall.

the Thread-Safe Reference Counted Smart Pointer

In our menu code we have our first mention of avery important utility template in ZooLib: the ZRef. The
ZRef template is a thread-safe reference counted smart pointer. ZooLib uses it for a purpose similar to
auto_ptr from the standard library, or boost::shared ptr from the Boost C++ library [http://www.boost.org/
] - automated management of allocated memory. All three templates share the behaviour that they
automatically delete the pointer when you are done with it, and they provide for exception safety.

If you alocate a pointer with new, hold it in a variable (whether alocal variable or a member variable),
and manually call delete when you are done, your code will work correctly under normal circumstances.
But it is not exception safe. If you hold apointer in alocal variable, and an exception isthrown before you
get to the delete, you will leak memory, and potentially other important resources held by the memory,
like open files, network connections or database locks. Only whole objects are automatically destroyed
when they go out of scope - pointers and references are not touched.

If you hold a pointer in a member variable and delete it in the class destructor, it will leak memory if
an exception is thrown during the constructor - incompletely constructed objects are not destroyed if an
exceptionisthrown during their construction. Thishasto be so because the object may bein aninconsistent
state that may have unpredictable behavior if the destructor is called.

The automatic memory management and exception safety both are enabled by holding the pointers in
objectsthat are possessed "by value" - aswhol e abjects, either on the stack or as member variables. Whole,
"by value" objects are guaranteed to be destroyed if they go out of scope, whether by leaving some code
inside apair of curly braces, or if the object that holds them is destroyed, or an exception is thrown. Each
kind of smart pointer will delete the pointer it holds in its destructor, if it judges that you are done with
it - the different types have different policiesfor this.

Why not just use auto_ptr? auto_ptr does not alow the sharing of resources. If you copy or assign an
auto_ptr, the ownership of the resource passes to the recipient. Thisis an odd behaviour, but is necessary
for simple management of a pointer to work. auto_ptr is also incompatible with the Standard Template
Library containers; astd::vector< auto_ptr< Foo > > simply will not work.

To enable resource sharing, and sensible behavior upon copying and assignment, you need reference
counting. boost::shared ptr does reference counting, why not use it? ZooLib needs to provide its own
template because ZooLib is a multithreaded framework. boost::shared ptr only provides for single-
threaded operation. The increment and decrement of the reference count must be performed with atomic
memory operations: two threads may be acquiring or releasing the same shared object simultaneously.
Such operations are not directly availablein C++; sometimesthey are provided as library functions by the
host OS, but often the set of atomic operationsis not sufficient for everything ZRef does. For that reason,
the atomic functions needed by ZooLib are provided by assembly code, usually inline assembly, in the
files ZAtomic.h and ZAtomic.cpp

When you construct a ZRef, you pass it a pointer to an object that has just been allocated with new.
The ZRef holds the pointer as a data member. Classes that can be held with ZRefs must inherit from

http://www.boost.org/
http://www.boost.org/

ZHelloworld

ZRefCounted. The ZRefCounted base class holds the reference count, so ZRef can tell the ZRefCounted
object to initialize its reference count to 1.

If aZRef object is assigned or copied, the reference count isincreased by one. If a ZRef is destroyed, the
reference count of the ZRefCounted it pointsto is decreased first. If the reference count reaches zero, then
the ZRefCounted pointer is deleted.

Syntactically, you can mostly treat the ZRef like an ordinary pointer. It provides overloads for operator->
and operator* that access the pointer. You can also store NULL in aZRef, it will act like anil pointer.

ZHelloWorld_Window: the Window Objects

The Window Class Declaration

The objectsthat represent our windows are of classZHelloworld Window. Thisisasubclass of ZWindow
and of ZPanelocator:

cl ass ZHel | oWorl d_W ndow : public ZW ndow,
publ i ¢ ZPaneLocat or
{
publi c:
ZHel | oWor | d_W ndow(ZApp* i nApp) ;
~ZHel | oWor | d_W ndow() ;

/1 From ZEvent H via ZW ndow
virtual void Dol nstal | Menus(ZMenul nstal | * i nMenul nstall);
virtual void DoSetupMenus(ZMenuSet up* i nMenuSet up);
virtual bool DoMenuMessage(const ZMessage& i nMenuMessage);

/1 From ZPaneLocat or
virtual bool GetPanelLocation(ZSubPane* inPane, ZPoint& outLocation);

pr ot ect ed:
ZW ndowPane* fW ndowPane;
ZUl Capt i onPane* f Hel | oPane;

b

Looking in ZWindow.h, we see that ZWindow is a subclass of ZOSWindowOwner, ZM essagel ooper,
ZMessageReceiver and ZFakeWindow.

ZOSWindowOwner links ZWindow to the real windows supplied by the operating system's GUI layer.
You will find the implementations of the different OS windows in each of the subdirectories of zoolib/
platform: ZOSWindow_Mac, ZOSWindow_Windows and so on.

ZMessageloopers may have messages posted to them and are responsible for dispatching them to the
ZMessageReceivers, which receive and handle them. Windows handle messages not only to respond to
menu commands, but also to GUI events like keypresses, mouse clicks, activations, notifications that the
window needs to draw, resizing and so on. You can also define your own messages to alow different
threads to communicate among each other or to themselves.

ZFakeWindow is a subclass of ZEventHr, which is defined to respond to most GUI events.
ZHelloworld_Window overrides several of ZEventHr's methods to provide menu handling, similar to the
menu handling provided by the application object.

ZHelloworld

Our First Look at ZPaneLocator

ZHelloworld_Window is a subclass of ZPanel ocator. The ZPanel ocator classisacentral concept in the
management of ZooLib graphical user interfaces, and it is very powerful and flexible, but it seemsto be
difficult for most beginners to learn to work with. | had a hard time with it myself, but | found it very
worthwhile to learn how to use it well. | will discussit in some detail in this book, returning to it severa
times.

ZPaneL ocators serve several functions, the first of them being the layout of widgets in windows.
ZPanelL ocators have a number of other dutiesthat | will get to later.

In most GUI frameworks, thelocation and size of each widget are stored as member variablesinthewidget.
Thisis even the case for non-object oriented toolkits, such asthe Mac OS Control Manager, where aMac
OS Buitton stores its own location in a data structure.

Thisworkswell for the most part, but is difficult to work with when the layout of the window is complex
and must be flexible. If we want the widgets to rearrange themselves as the window is resized, or to
automatically adjust for the width of label text that may be transated into different languages, it is hard
for the individual widgets to know how to adjust.

It is particularly inflexible if the windows are designed with a graphical layout tool that saves the widget
coordinatesin files, such as Mac or Windows resource files.

In ZooL ib, individual GUI widgets are not responsible for knowing their own sizes or locations. Instead,
they hold a pointer to their ZPanel ocator, and any inquiries about dimensions are passed on to the locator.
Typically aZPanel ocator manages anumber of different widgetsand can carry out the cal cul ations needed
to keep them arranged relative to each other.

ZHellowWorld_Window is a simple ZPanel ocator, it only serves to provide the location of its subpanes:

bool ZHel | oWorl d_W ndow: : Get PaneLocat i on(ZSubPane* i nPane, ZPoi nt & out Locati on)
{
if (inPane == fHell oPane)
{
ZPoi nt theSize = i nPane->Get Si ze();
ZPoi nt super Si ze = i nPane->CGet Super Pane()->Get I nternal Si ze();
out Location = (superSize - theSize) / 2;
return true;

}

return ZPanelLocat or: : Get PaneLocati on(i nPane, outLocation);

}

GetPanel ocation is passed a pointer to the ZSubPane whose location is needed, and a reference to the
ZPoint where the location is to be stored. The code here tests if the subpane is the one whose pointer is
stored in the member variable fHelloPane, if it is, it calls the subpane's GetSize() method to find its size,
and the pane's superpane's Getlnternal Size() method to find the size of the pane it is inside of. Then it
divides the vector difference of these by two to get the value to place in outLocation. This has the effect
of centering fHelloPane in its superpane.

GetPanel ocation returnstrueif it handled the call by supplying the location, otherwiseit passes on the call
by returning the result of ZPanel ocator::GetPanelocation. With this, it is possible to chain Panel ocators
that handle different responsibilities.

Now what does ZSubPane::GetSize() do? We can have alook at the source code in ZPane.cpp:

ZHelloworld

ZPoi nt ZSubPane: : Get Si ze()

{

ZPoi nt theSi ze;

i f (fPaneLocator && fPanelLocat or->Get PaneSi ze(this, theSize))
return thesSize;

i f (fSuperPane)
return fSuperPane->Cetlnternal Size();

return ZPoint:: sZero;

}

If the pane has a non-nil ZPaneL ocator pointer, then it called GetPaneSize to ask the pane locator for the
size. If it has no locator, then it asks for the internal size of its superpane, so if there is no pane locator,
it fills up its whole superpane. If it has no superpane it defaults to (0,0). Thus we see that by default,
ZSubPanes do not know about their sizes on their own. The code for ZSubPane::GetL ocation() is similar.

It is possible to override GetSize() and provide a size directly if you want to do so. That makes the most
sensefor widgetsthat will always be the same size. Alternatively, you can do thisin a superpane that wants
to set its size to just surround all its subpanes.

Constructing and Destructing the Window

The constructor for the ZHelloworld_Window calls its base class constructor, passing it the ZA pp pointer
(used asaZWindowSupervisor pointer) and apointer toaZOSWindow it hasjust created. It al so constructs
its other base class, ZPanel ocator, by passing nil as the next locator in the chain, to indicate that there are
no others. Then it creates the window's content:

ZHel | oWor | d_W ndow:. : ZHel | oWor | d_W ndow(ZApp* i nApp)
ZW ndow(i nApp, sCreat eOSW ndow(i nApp)),
ZPaneLocat or (ni l)
{
this->SetTitle("Hello Wrld Wndow");
t hi s- >Set Backl nks(ZU Attri but eFactory: :sGet()->Cet| nk_W ndowBackgr ound_Di al og(),
f W ndowPane = new ZW ndowPane(this, nil);
fHel | oPane = ZUl Factory::sCet()->Make_Capti onPane(f W ndowPane, this, "Hello Wirld

}
Creating the ZOSWindow

Y ou will need to provide afunction like sCreateOSWindow for each window variation you wish to create.
If it is a member of your window's class it should be declared static as it is used during the constructor
initializer list, when the window object is not completely constructed yet (in general you should never
pass "this' as a parameter to functions called from initializer lists, not even implicitly by calling your own
non-static member functions. It is permissible to pass "this' to base class member functions, as any base
classes have aready been constructed)

sCreateOSWindow is responsible for creating the real window on the screen that is managed by the
operating system:

static ZOSW ndow* sCreat eOSW ndow(ZApp* i nApp)
{

ZOSW ndow. : Creati onAttri butes attr;

10

ZHelloworld

attr.fFrane = ZRect (0, 0, 200, 80);
attr.fLook = ZOSW ndow: : | ookDocunent ;
attr.fLayer = ZOSW ndow: : | ayer Docunent ;
attr.fResizable = true;

attr.fHasSi zeBox = true;

attr.fHasC oseBox = true;
attr.fHasZoonmBox = true;
attr.fHasMenuBar = true;
attr.fHasTitlelcon = fal se;

return i nApp->Creat eOSW ndow attr);

}

First you initialize aZOSWindow:: Creati onAttributes structure with your options for the size, appearance
and behaviour of the window. Note the fLook and fLayer options; the look and feel of the window are
specified separately. Using ZOSWindow::lookDocument and ZOSWindow::layerDocument creates an
ordinary kind of window. Y ou can aso create windows with appropriate appearances for modal dialogs,
movable modal dialogs, tool palettes and so on. From ZOSWindow.h:

enum Look { | ookDocument, | ookPalette, |ookMddal, |ookMvabl eMddal,
| ookAl ert, | ookMovabl eAl ert, | ookThi nBorder, | ookMenu, | ookHelp };

ZooL ib alows windows to be managed in different ways, to provide norma window behaviour, or modal
diaogs (windows that must be dealt with by the user before work can continue), windows that float above
the rest, and "sinkers' or windows that stay at the bottom of the heirarchy. The selections available are
again found in ZOSWindow.h:

enum Layer { |ayerDunmy, |ayerSinker, |ayerDocunent, |ayerFloater, |ayerDi al og,
| ayer Menu, | ayer Hel p,
| ayer Bott onVost = | ayer Dumy, | ayer TopMost = | ayerHel p };

Creating the Window Contents

Now we examine the body of ZHelloworld Window's constructor:

this->SetTitle("Hello Wrld Wndow');

t hi s- >Set Backl nks(ZUl Attri but eFactory: :sGet()->Cet| nk_W ndowBackground_Di al og(),

f WndowPane = new ZW ndowPane(this, nil);

fHel | oPane = ZUl Factory::sGet()->Make_Capti onPane(fW ndowPane, this, "Hello Wrld

First we set the window's title.

Then we set the window's background inks. These are the colors that will be drawn if nothing else is -
that is, the window will be erased with these colors when an update starts, before the contents are drawn.
There are two inks that are provided to SetBacklinks; the first is used when the window is active, and the
second is used when the window isin the background.

Hereisan example of using afactory, inthiscase the ZUIAttributeFactory, to enable astandard appearance
for the application. It calls Getlnk_WindowBackground_Dialog to get the normal ink for dialog windows

11

ZHelloworld

according to the platform standard. For the deactivated ink, we construct afixed yellow color ink; thusthe
window will turn yellow when it is no longer in the front.

When awindow is constructed, it has no panesin it. The panes are where the actual drawing takes place,
and they are the ultimate recipients of Ul eventslike mouse clicks and keystrokes. First we must construct
a special pane that takes up the whole window, by alocating a ZWindowPane. We store a pointer to it
in fWindowPane.

Finally we get to the real meat of our application, shouting "Hello World!":

fHel | oPane = ZUl Factory::sCet()->Make_Capti onPane(f W ndowPane, this, "Hello Wrld!

We obtain a pointer to the ZUIFactory through its static method sGet(). Then we call Make CaptionPane
to alocate a new ZUICaptionPane that says "Hello World!". The interface to Make CaptionPaneis:

virtual ZUl CaptionPane* Make_ Capti onPane(ZSuper Pane* i nSuperPane, ZPanelLocator* in

All ZSubPaneswill need to have pointersto their ZSuperPane and ZPanel ocator provided. Itispermissible
to pass nil for each of these; a nil superpane indicates the subpane is not attached to any window yet, and
anil ZPanel ocator indicates the defaults are to be used for such things as pane size and location.

Once a ZUICaptionPane is placed in a window, it takes care of keeping itself updated. No more work is
required to spread our greetings to the world. However, if you want to implement your own subclass of
ZSubPane to provide custom drawing, you should do the actual rendering in an override to ZSubPane's
DoDraw method.

Destroying the Window

Y ou never explicitly delete aZWindow pointer. Ordinarily ZWindows are deleted by ZooLib in response
to the user clicking the window's close box. But you can provide a destructor for your window.
ZHelloworld_Window does not do anything in its destructor:

ZHel | oWor I d_W ndow: : ~ZHel | oWor | d_W ndow()
{}

A lot happens behind the scenes in the base class destructors though. ZooLib will delete all the subpanes,
the menu bar and menus, and dispose of the operating system window.

You can close a window yourself, and cause its eventua deletion, by calling
ZWindow::CloseAndDispose().

On all the systems besidesthe Mac OS, normal behaviour isfor the application to quit after the last window
is closed. On the Mac, the application normally stays running with only the top menu bar remaining.
ZooLib does not keep count of your windows for you, so it is possible to close al of the windows and
have the application object still running. Thisisthe case with ZHellowWorld as the sourceis provided, and
itisabug. If you close al the windows without selecting "Quit" from the File menu first, the process will
be left running with no user interface. Y ou will have to kill the process with the Windows task manager
or thekill command on BeOS or Unix.

One simple way to deal with thisisfor your application object to keep a count of open windows. When a
new window is created, it sends a message to the ZApp informing of its birth. It also sends a natification
from its destructor. When the count of windows reaches zero, you call PostRequestQuitM essage from the
ZApp object. ZooLib will take care of shutting down your application object, and then its Run method will
return to ZMain, where you will then return and ZooL ib will terminate the program.

12

ZHelloworld

Creating the Window's Menus

The window provides a menu in addition to those provided by the application object:

void ZHel | oworl d_W ndow:. : Dol nst al | Menus(ZMenul nstal | * i nMenul nstal |)

{
ZW ndow: : Dol nst al | Menus(i nMenul nstal l);

ZRef <ZMenu> hel | oMenu = new ZMenu;

i nMenul nstal | - >Append(" &Hel | 0", hel |l oMenu);
hel | oMenu- >Append(ntHel |l o_Again, "&Hello Wrld Again!", '"H);
hel | oMenu- >AppendSepar at or () ;
hel | oMenu- >Append(ntHel | o_Pi xmap, "My New Ni ece");
hel | oMenu- >Append(ntHel | o_Text Resource, "Text Resource");
hel | oMenu- >Append(ntHel | o_Text Har dCoded, "Text (Hard coded)");
}

ZHelloWorld::DolnstallMenus creates a menu titled "Hello" that has several itemsin it, one for creating
a new Hello World window, as well as showing a picture of Andy's newborn niece Amy from a BMP
graphic stored in aresource file, retrieving the message from a resource file, and inserting hardcoded text
into the message

Enabling the Menu Items

Before ZooL ib responds to a mouse click on the menu bar, it calls DoSetupMenus to allow your code to
enable or disable menu items according to the current state of the application or document. It isimportant
to provide the DoSetupM enus implementation because the menu items are disabled by default:

voi d ZHel | owor | d_W ndow. : DoSet upMenus(ZMenuSet up* i nMenuSet up)
{
ZW ndow: : DoSet upMenus(i nMenuSet up) ;
i nMenuSet up- >Enabl el t em(ncC ose) ;
i nMenuSet up- >Enabl el t em(ntHel | o_Agai n);
i nMenuSet up- >Enabl el t em(ncHel | o_Pi xmap) ;
i nMenuSet up- >Enabl el t em(ncHel | o_Text Resour ce) ;
i nMenuSet up- >Enabl el t em(ncHel | o_Text Har dCoded) ;
}

DoSetupMenusis passed a pointer to aZMenuSetup object. Call its Enableltem member function with the
menu command constant to enable an item.

Note

| need to check with Andy about this, | see acomment in ZMenu.h that indicates that Enableltem
is deprecated.

Handling Menu Messages

Menu messages may be handled by awindow or by its ZWindowSupervisor, the application object in our
case. Thisallows common functionsto be handled in acentral |ocation by the application, but allows menu
commands that are particular to a document to be handled by the window that holds the document.

13

ZHelloworld

bool ZHel | oWorl d_W ndow. : DoMenuMessage(const ZMessage& i nMenuMessage)

{
swi tch (i nMenuMessage. Get | nt 32(" nmenuConmand”))

{

case ntd ose:

{

t hi s- >Cl oseAndDi spose();
br eak;

}

case ntHel | o_Agai n:
{
ZW ndow* t heW ndow = new ZHel | oWor | d_W ndow(ZApp: : sCGet ());
t heW ndow >Cent er () ;
t heW ndow- >Bri ngFront () ;
t heW ndow >Cet Lock() . Rel ease();
return true;

}

case nctHel | o_Pi xmap:
{
ZDCPi xmap thePi xmap = ZUI Uil :: sLoadPi xmapFr onBMPResour ce(KRSRC_BMP_Any) ;
f Hel | oPane- >Set Capti on(new ZUI Capti on_Pi x(t hePi xmap), true);
br eak;

}

case ntHel | o_Text Resour ce:
{
string theText = ZString::sFronttrResource(kRSRC_STR Hel | oWr | d);
ZRef <ZUl Font > theU Font = ZUl Attri buteFactory::sGet()->Cet Font _Systeniarge();
ZRef <ZUl Capti on> t heUl Capti on = new ZUl Capti on_Text (t heText, theU Font, 0);
f Hel | oPane- >Set Capti on(t heUl Caption, true);
br eak;

}
case ntHel | o_Text Har dCoded:

{

string theText = ZString::sFronttrResource(kKRSRC_STR Hel | oWor | d);

ZDCFont t heDCFont = ZDCFont :: sApp9;

t heDCFont . Set Styl e(t heDCFont . Get Styl e() | ZDCFont::underline);

ZRef <ZUl Font > t heU Font = new ZUl Font _Fi xed(t heDCFont) ;

ZRef <ZUl Capti on> t heUl Caption = new ZUl Caption_Text("Hello Wrld! (hard coded)"
f Hel | oPane- >Set Capti on(t heUl Caption, true);

br eak;

}
}
return ZW ndow. : DoMenuMessage(i nMenuMessage) ;

}

Another important concept within ZooLib is the ZMessage. ZMessages allow formatted packets of data
to be communicated between threads or within athread. ZMessages store data of different types that are
accessed by name and type. In the case of a menu command, the data stored is a 32-bit integer, and its
name is "menuCommand”. There will be much to say about ZMessages later on.

Here we switch according to the command after retrieving its value:

14

ZHelloworld

sw tch

(i nMenuMessage. Get I nt 32(" menuConmand”))

The different "mc" constants are defined at the top of the file asinteger values following mcUser:

#i ncl ude " ZMenuDef . h"

...

#defi ne
#defi ne
#defi ne
#defi ne

ncHel | o_Again ncUser + 1
ncHel | o_Pi xmap nctUser + 2
ncHel | o_Text Resource ntUser + 3
ncHel | o_Text Har dCoded ntUser + 4

If youlook in ZMenuDef.h, you will seethat it definesanumber of standard Ul commands, like mcAbout,
which is the command to display an "About Box". It also defines mcUser. The command numbers less
than mcUser are reserved for definition by ZooL ib, although usually intended to be implemented by your
own code. The values above mcUser are for your use as you please.

WEe'l go into the details of what each of the menu commands do later. But for now notice the last line of
the function, which passes off any unknown menu commands to the window:

return ZW ndow. : DoMenuMessage(i nMenuMessage) ;

15

